
Cooking Python and PostgreSQL

Aleksandr Dinu

January 22, 2026

Goals for this talk

▶ Revisit common gotchas of Python ORMs usage
▶ PostgreSQL-specific tips to make devs (and ops) happier

ORMs - why do we even need them?

▶ ORMs define tables, columns, contraints and foreign keys
using Python concepts - classes, attributes and methods

▶ Operate with data as if they were regular ’objects’ from the
database
▶ not rows, but objects
▶ not database cursors, but seqs of objects

▶ Ease database schema management
▶ converting changes from the code of models to the DDL

statements
▶ give CLI for ’migrations’ execution

▶ Ease connection and transaction control
▶ give tools to manage transaction boundaries
▶ connection pooling

Django

class Question(Model):
question_text = CharField()
published_at = DateTimeField()

class Choice(Model):
question = ForeignKey(Question)
choice_text = CharField()

sqlalchemy

class Question(Base):
__tablename__ = ’question’

id = Column(Integer, primary_key=True)
question_text = Column(String())
published_at = Column(DateTime)

class Choice(Base):
__tablename__ = ’choice’

id = Column(Integer, primary_key=True)
question_id = Column(

Integer, ForeignKey(’question.id’))
question = relationship(Question)
choice_text = Column(String())

ORMs - Object-Relational Mapping

▶ ORM converts fetched database tuples into objects for us to
match application code models

▶ ORM implements objects in a way that is easy to use for
developers

▶ ORM allows to define relationships between models and use
those as simple model instance attributes

ORMs - be aware of when and what you’re fetching

BAD
doing SELECT * FROM questions;
and counting ’objects’ in Python
Django ORM
questions_count = len(Question.objects.all())

SQLAlchemy
questions_count = len(session.query(Question).all())

ORMs - be aware of when and what you’re fetching

BETTER
doing SELECT COUNT(*) FROM questions;
and getting integer value back
Django ORM
questions_count = Question.objects.count()

SQLAlchemy
questions_count = session.query(Question).count()

ORMs - be aware of when and what you’re fetching

Dummy (and most likely wrong) benchmark:
▶ sqlite database (no network costs, 100000 entries)
▶ performing objects fetching and running len() on the first

1000 questions
▶ performing SELECT COUNT(*) query on the first 1000

questions

Percentiles: (25%, 50%, 75%)
Fetch + len(): (5.94, 6.04, 6.40) (ms)
Count query: (0.71, 0.72, 0.73) (ms)

ORMs - Object-Relational Mapping

▶ Relational algebra operates with the term ’relations’
(tables/views) and defines ’join’ - operation that allows to
combine ’relations’

▶ ORMs offer ways to express 1:M, 1:1, M:M relationships
between models

▶ These relationships are later translated in ’join’ operations
when ORM translates method calls into SQL-queries

ORMs - Object-Relational Mapping - what often goes wrong

Same dummy benchmark:
▶ sqlite database (no network costs, 100000 entries, 5-10 choices

each)
▶ selecting 100 questions with all related choices + iterating

through all choices
▶ option #1 fetches choices in a ’joined’ manner

▶ joinedload() in SQLA or .select_related() in Django
▶ option #2 fetches choices in a ’lazy’ manner

▶ classic "N+1 problem"
▶ lazyload() in SQLA or not using

.select_related()/.prefetch_related() in Django

Percentiles: (25%, 50%, 75%)
Joined load + iterate: (43.27, 44.12, 44.85) (ms)
Lazy load + iterate: (932.75, 933.53, 933.92) (ms)

ORMs - Object-Relational Mapping

Most ORMs offer schema management tooling:
▶ able to generate DDL statements based on the object model

description in application code, aka ’migrations’
▶ also can apply such ’migrations’ to update database schema to

the most recent state

ORMs - Object-Relational Mapping - what goes wrong

▶ Not all SQL-dialect concepts can be expressed in ORM terms
▶ think of custom types, extension, triggers, stored procedures

▶ Altering database schema can be backward-incompatible
▶ e.g. removing a column in a table that’s still used by some

running application
▶ Ignoring operational semantics of the underlying database

engine
▶ altering schema may cause table rewrites, performance

degradation, extensive locking or other not expected behavior

PostgreSQL - improve observability

▶ Specify application name while connecting to the database
▶ create_engine("postgresql://...",

connect_args={"application_name":"myapp"})
▶ log_line_prefix = ’%a %u %d’ in postgresql.conf and

you’ll see it in PostgreSQL logs
▶ (almost) all cloud providers support monitoring based on the

supplied app name
▶ Enable logging of slow queries

▶ log_min_duration_statement = 1000 - log all queries
slower that 1000ms

▶ log_lock_waits = on + deadlock_timeout = 1s - log all
queries that were waiting for any database locks longer than 1s

▶ Add metrics around number of queries performed during
request handling
▶ it would help to identify N+1 queries

PostgreSQL - know your queries

▶ If you have caught a slow query in production, pick it
▶ Run EXPLAIN (ANALYZE, BUFFERS) <your-query> to get a

query’s execution plan
▶ The BUFFERS option tells you how many pages of 8k

PostgreSQL used to answer this particular query and in which
way:
▶ hit - number of pages found in the shared buffers
▶ read - number of pages read from the disk
▶ write - number of pages written to the disk (e.g. in case of

sorting, joins, etc)
▶ once pages are read from the disk, they are in shared buffer

cache. next run of the same query will be faster because of
this.

▶ BUFFERS output is especially relevant in cloud environment
▶ if you run PostgreSQL on top of AWS EBS/Azure Managed

Disk or Google’s Persistent Disk - those read’s directly convert
to IOPS you use.

PostgreSQL - test more, test early and test often

▶ Lint your migrations with Squawk
▶ let CI tell you which migrations are backward-incompatible or

can cause excessive locking

▶ Add performance regression tests of queries that you executeq
with RegreSQL

▶ HYPE ALERT: take a closer look at branching
▶ rather new-ish approach to testing related to databases
▶ allows you to have full copy for production database without

actually copying the content of it, but rather tracking changes
that happen on top of a snapshot of the database state at
some point.

https://squawkhq.com/
https://github.com/boringSQL/regresql

PostgreSQL - Squawk

PostgreSQL - RegreSQL

PostgreSQL - branching

Idea is to embed tests against production-sized database into your
software delivery pipelines. Think of:
▶ having preview environment for every pull request based on

shared database, but having writes in its own ’database branch’
▶ running your schema or data migrations against ’database

branch’ with the same data as in production
▶ giving access to copies of production dataset to data analytics

teams without 2x costs
Many providers:
▶ pg_branch, pgcow - extensions/forks of PostgreSQL to work

on top of BTRFS and ZFS
▶ neon - fork of PostgreSQL + custom storage layer
▶ Heroku, Databricks Lakebase, Neon, Postgres.ai - DBaaS

products that support branching

https://github.com/NAlexPear/pg_branch
https://github.com/Photonios/pgcow
https://github.com/neondatabase/neon
https://devcenter.heroku.com/articles/heroku-postgres-fork
https://docs.databricks.com/aws/en/oltp/projects/branches
https://neon.com/docs/introduction/branching
https://postgres.ai/docs/dblab-howtos/branching/create-branch

Thank you!

	Intro
	Python
	PostgreSQL

