Cooking Python and PostgreSQL

Aleksandr Dinu

January 22, 2026

Goals for this talk

» Revisit common gotchas of Python ORMs usage
» PostgreSQL-specific tips to make devs (and ops) happier

ORMs - why do we even need them?

» ORMs define tables, columns, contraints and foreign keys
using Python concepts - classes, attributes and methods

» Operate with data as if they were regular 'objects’ from the
database

» not rows, but objects
» not database cursors, but seqs of objects

» Ease database schema management
» converting changes from the code of models to the DDL
statements
» give CLI for 'migrations’ execution
» Ease connection and transaction control

» give tools to manage transaction boundaries
» connection pooling

Django

class Question(Model):
question_text = CharField()
published_at = DateTimeField()

class Choice(Model):
question = ForeignKey(Question)
choice_text = CharField()

sqlalchemy

class Question(Base):
__tablename__ = ’question’

id = Column(Integer, primary_key=True)
question_text = Column(String())
published_at = Column(DateTime)

class Choice(Base):
__tablename__ = ’choice’

id = Column(Integer, primary_key=True)
question_id = Column(

Integer, ForeignKey(’question.id’))
question = relationship(Question)
choice_text = Column(String())

ORMs - Object-Relational Mapping

» ORM converts fetched database tuples into objects for us to
match application code models

» ORM implements objects in a way that is easy to use for
developers

» ORM allows to define relationships between models and use
those as simple model instance attributes

ORMs - be aware of when and what you're fetching

BAD
doing SELECT * FROM questions;

and counting ’objects’ in Python
Django ORM
questions_count

len(Question.objects.all())

SQLAlchemy
questions_count = len(session.query(Question).all())

ORMs - be aware of when and what you're fetching

BETTER
doing SELECT COUNT(*) FROM questions;
and getting integer value back

Django ORM
questions_count

Question.objects.count ()

SQLAlchemy
questions_count = session.query(Question).count ()

ORMs - be aware of when and what you're fetching

Dummy (and most likely wrong) benchmark:
» sqlite database (no network costs, 100000 entries)
» performing objects fetching and running 1en() on the first
1000 questions

» performing SELECT COUNT (*) query on the first 1000
questions

Percentiles: (25%, 50%, 75%)
Fetch + len(): (5.94, 6.04, 6.40) (ms)
Count query: (0.71, 0.72, 0.73) (ms)

ORMs - Object-Relational Mapping

» Relational algebra operates with the term 'relations’
(tables/views) and defines 'join’ - operation that allows to
combine 'relations’

» ORMs offer ways to express 1:M, 1:1, M:M relationships
between models

» These relationships are later translated in 'join' operations
when ORM translates method calls into SQL-queries

ORMs - Object-Relational Mapping - what often goes wrong

Same dummy benchmark:

» sqlite database (no network costs, 100000 entries, 5-10 choices
each)

» selecting 100 questions with all related choices + iterating
through all choices

» option #1 fetches choices in a 'joined” manner

» joinedload() in SQLA or .select_related() in Django
» option #2 fetches choices in a 'lazy’ manner

» classic "N+1 problem"
» lazyload() in SQLA or not using
.select_related()/.prefetch_related() in Django

Percentiles: (25%, 50%, 75%)
Joined load + iterate: (43.27, 44 .12, 44 .85) (ms)
(

Lazy load + iterate: 932.75, 933.53, 933.92) (ms)

ORMs - Object-Relational Mapping

Most ORMs offer schema management tooling:

» able to generate DDL statements based on the object model
description in application code, aka 'migrations’

> also can apply such 'migrations’ to update database schema to
the most recent state

ORMs - Object-Relational Mapping - what goes wrong

» Not all SQL-dialect concepts can be expressed in ORM terms
» think of custom types, extension, triggers, stored procedures
» Altering database schema can be backward-incompatible
» e.g. removing a column in a table that's still used by some
running application
» Ignoring operational semantics of the underlying database
engine
» altering schema may cause table rewrites, performance
degradation, extensive locking or other not expected behavior

PostgreSQL - improve observability

» Specify application name while connecting to the database
P> create_engine("postgresql://...",

connect_args={"application_name":"myapp"})

» log_line_prefix = ’%a %u %d’ in postgresql.conf and
you'll see it in PostgreSQL logs

» (almost) all cloud providers support monitoring based on the

supplied app name
» Enable logging of slow queries
» log_min_duration_statement = 1000 - log all queries
slower that 1000ms
» log_lock_waits = on + deadlock_timeout = 1s - log all
queries that were waiting for any database locks longer than 1s
» Add metrics around number of queries performed during
request handling
» it would help to identify N+1 queries

PostgreSQL - know your queries

» If you have caught a slow query in production, pick it

> Run EXPLAIN (ANALYZE, BUFFERS) <your-query> to get a
query's execution plan

» The BUFFERS option tells you how many pages of 8k
PostgreSQL used to answer this particular query and in which
way:

» hit - number of pages found in the shared buffers

» read - number of pages read from the disk

» write - number of pages written to the disk (e.g. in case of
sorting, joins, etc)

» once pages are read from the disk, they are in shared buffer
cache. next run of the same query will be faster because of
this.

» BUFFERS output is especially relevant in cloud environment

» if you run PostgreSQL on top of AWS EBS/Azure Managed
Disk or Google's Persistent Disk - those read’s directly convert
to IOPS you use.

PostgreSQL - test more, test early and test often

» Lint your migrations with Squawk
» let Cl tell you which migrations are backward-incompatible or
can cause excessive locking

> Add performance regression tests of queries that you executeq
with RegreSQL
» HYPE ALERT: take a closer look at branching

» rather new-ish approach to testing related to databases

» allows you to have full copy for production database without
actually copying the content of it, but rather tracking changes
that happen on top of a snapshot of the database state at

some point.

https://squawkhq.com/
https://github.com/boringSQL/regresql

PostgreSQL - Squawk

)
E squawk-squawk bot commented on Jun 20, 2020 - edited by sbdchd « @ -
Squawk Report

2 violations across 1 file(s)

./0077_ingredient_foo.sql

BEGIN;

Add field foo to ingredient

ALTER TABLE “core_ingredient" ADD COLUMN “foo" text DEFAULT '' NOT NULL;
ALTER TABLE “core_ingredient” ALTER COLUMN "foo" DROP DEFAULT;
COMMIT;

& Rule Violations (2)

./0077_ingredient_fo0.sql:2:1: warning: adding-not-nullable-field

2] -
3| -- Add field foo to ingredient
4] —

5 | ALTER TABLE “core_ingredient" ADD COLUMN "foo" text DEFAULT '' NOT NULL;

note: Adding a NOT NULL field requires exclusive locks and table rewrites.
help: Make the field nullable.

:1: warning: adding-field-with-default

./0077_ingredient_foo.sql:

2| —
3| - Add field foo to ingredient

4] -

5 | ALTER TABLE “core_ingredient" ADD COLUMN "foo" text DEFAULT '' NOT NULL;

note: In Postgres versions <11 adding a field with a DEFAULT requires a table rewrite with an ACCESS EXCLUSI\
help: Add the field as nullable, then set a default, backfill, and remove nullabilty.

PostgreSQL - RegreSQL

Connecting to 'postgres://appuser:password123@192.168.139.28/cdstore_test'.. v

Running regression tests...

N

album-by-artist_list-albums-by-artist.1.json (0.00s)
album-by-artist_list-albums-by-artist.2.json (0.00s)
album-by-artist_list-albums-by-artist.l.cost (22.09 < 22.09 % 110%) (0.00s)
I Sequential scan detected on table 'artist'

Suggestion: Consider adding an index if this table is large or this query is frequent
I Nested loop join with sequential scan detected

Suggestion: Add index on join column to avoid repeated sequential scans
album-by-artist_list-albums-by-artist.2.cost (22.89 < 22.89 x 118%) (0.00s)
I Sequential scan detected on table 'artist'

Suggestion: Consider adding an index if this table is large or this query is frequent
I Nested loop join with sequential scan detected

Suggestion: Add index on join column to avoid repeated sequential scans

<

N

N

<

album-tracks_list-tracks-by-albumid.1.json (0.00s)
album-tracks_list-tracks-by-albumid.2.json (0.00s)
album-tracks_list-tracks-by-albumid.l.cost (8.23 <
album-tracks_list-tracks-by-albumid.2.cost (8.23 <

N

N

8.23 x 110%) (0.60s)
8.23 * 110%) (0.00s)

<

PostgreSQL - branching

Idea is to embed tests against production-sized database into your
software delivery pipelines. Think of:

» having preview environment for every pull request based on
shared database, but having writes in its own 'database branch’

» running your schema or data migrations against 'database
branch’ with the same data as in production

> giving access to copies of production dataset to data analytics
teams without 2x costs

Many providers:

» pg_branch, pgcow - extensions/forks of PostgreSQL to work
on top of BTRFS and ZFS

» neon - fork of PostgreSQL + custom storage layer

» Heroku, Databricks Lakebase, Neon, Postgres.ai - DBaaS
products that support branching

https://github.com/NAlexPear/pg_branch
https://github.com/Photonios/pgcow
https://github.com/neondatabase/neon
https://devcenter.heroku.com/articles/heroku-postgres-fork
https://docs.databricks.com/aws/en/oltp/projects/branches
https://neon.com/docs/introduction/branching
https://postgres.ai/docs/dblab-howtos/branching/create-branch

Thank you!

	Intro
	Python
	PostgreSQL

