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Imbalanced data (1)
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Imbalanced data (2)
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Figure 7: Main modelling strategies for imbalanced domains.

Branco, Paula, Luis Torgo, and Rita P. Ribeiro. "A survey of predictive modeling on imbalanced domains." ACM Computing Surveys (CSUR) 49.2 (2016): 1-50.



Sensitivity vs Specificity (1)
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Sensitivity vs Specificity (2)
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Precision vs Recall (1)
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Precision vs Recall (2)
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Precision vs Recall (3)
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Probabilistic classifiers
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ROC curve (1) Sensitivity
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AUCROC can be interpreted as the probability that the scores given by a classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative one.

https:.//github.com/dariyasydykova/open_projects/tree/master/ROC _animation 10
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/



ROC curve (2)
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PR curve

The PR curves plots the following parameters:
Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
Notice how True Negatives (TN) are absent from the equation?

PR curves are useful when positive examples are rare.

https.//stats.stackexchange.com/questions/398199/why-is-a-pr-curve-considered-better-than-an-roc-curve-for-imbalanced-datasets



Comparing curves, balanced simulated data
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PR curve, balanced data

PPV = Positive Predictive
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Misleading AUC values

AUC = 0.732
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= Threshold

ROC curve

Comparing curves, imbalanced simulated data
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PR curve, imbalanced data
(positive examples are rare)
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... precision and recall make it possible to assess the performance of a

classifier on the minority class

https://github.com/dariyasydykova/open_projects/tree/master/ROC _animation
https.//machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
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PR curve, imbalanced data
(negative examples are rare)
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Practical tip (simplified)
* When to use PR AUC or AUROC?

— When two classes are equally important

 AUROC if the goal is to perform equally well on both classes.

— Image classification between cats & dogs; the performance on cats is equally important on
dogs.

— When minority class is more important
PR AUC if the focus of the model is to identify correctly as many positive samples as
possible.

— Spam detectors; regular emails are not of interest at all — they overshadow the number of
positives.

https://sinyi-chou.github.io/classification-pr-curve/
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc



Words of caution

 ROC curves have common advantages
— Universal baselines
* A random classifier is represented by a major diagonal

— Linear interpolation
* Any two points on an ROC curve can be linearly interpolated

— Interpretable area:
* AUROC can be used to calculate an expected accuracy of the model:

* PR curves have pitfalls

— No universal baseline
* Performance of a random classifier depends on the prevalence in the data set
— No linear interpolation

— Uninterpretable area

* Area under curve, commonly calculated by a trapezodial rule that performs linear interpolation, might be an
overly optimistic measure

https://medium.com/knowledge-engineering-seminar/evaluating-probabilistic-classifier-roc-and-pr-g-curves-6647c¢3379d60



Comparing classifiers, balanced simulated data (1)

RandomForestClassifier LogisticRegression
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https://cosmiccoding.com.au/tutorials/pr_vs_roc_curves



Comparing classifiers, balanced simulated data (2)
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Comparing classifiers, imbalanced simulated data (1)

RandomForestClassifier LogisticRegression
Actual data Correct Classification Correct Classification

https://cosmiccoding.com.au/tutorials/pr_vs_roc_curves



Comparing classifiers, imbalanced simulated data (2)
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Conclusions

There is no universal way of treating imbalanced data
— Choices are application-specific

In case of balanced data AUROC and AP are comparable

For imbalanced data
— Both classes are important — use AUROC
— Minority positive class is more important — use PR curve

Extremely high imbalance?
— Consider switching to anomaly detection methods



Q&A
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